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Abstract—In this paper, we address skeleton-based action
recognition under the self-supervised setting. We propose a
novel framework Bayesian Contrastive Learning with Manifold
Regularization (BCLR). In Bayesian contrastive learning, we
employ Monte Carlo Dropout sampling on the adjacency matrix
of the skeleton data to obtain positive/negative samples for
model robustness. A novel entropy-based memory bank updating
strategy is further proposed to take full advantage of hard
negative samples for better separability. The feature manifold
regularization, including projection-based data reconstruction
and similarity-based feature decoupling, on the other hand, is
designed to extract comprehensive information to avoid overfit-
ting and increase feature diversity to prevent a collapse of the
model. With Bayesian contrastive learning and feature manifold
regularization, our model learns stronger and more discrim-
inative features. Extensive experiments on NTU RGB+D and
PKUMMD show that the proposed method achieves remarkable
action recognition performance.

Index Terms—skeleton based action recognition, contrastive
learning, bayesian neural network, self-supervised learning

I. INTRODUCTION

Action recognition is a critical and challenging field in

computer vision and has wide application in human-computer

interaction, video surveillance, virtual reality, etc. Human

skeletons describe human behaviors with skeleton joints using

the 3D coordinate locations, and have attracted increasing

attention in recent years [1–6]. It can be easily captured by

depth sensors or extracted from other modalities with mature

algorithms [7]. Compared with RGB videos or depth data,

skeletons are lightweight, privacy-preserving, and robust to

views, appearances, and backgrounds. Moreover, skeletons are

higher-level feature representations of human motion, which

are easier for analysis and more discriminative for action

recognition.

Conventional skeleton-based action recognition methods [8–

10] require numerous labeled training data and are of limited

flexibility for practical application. To get rid of the reliance on

full supervision, Zheng et al. [11] first proposed to effectively

learn skeleton representations from unlabeled data. Since then,

researchers have been made great efforts for self-supervised

skeleton-based action recognition [6, 12, 13]. Current methods
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can be classified into two categories: reconstruction-based

and contrastive learning. Reconstruction-based methods [6]

apply encoder-decoder structures, where the encoder extracts

features from the original or part of the skeleton data, and

the decoder reconstructs the skeleton based on the extracted

features. Contrastive learning [12–14] employs data trans-

formation to generate positive/negative samples and narrows

the distance between positive samples while increasing the

distance between negative samples for intra-class tightness and

inter-class separability.

However, for reconstruction-based methods, there is a se-

vere task gap between generation and recognition, which

can degrade the performance of downstream tasks. And for

contrastive learning, first, there is a lack of transformation

designed specifically for skeletons, while the performance of

contrastive learning is greatly affected by data transformation.

Second, skeleton data, as a high-level representation, is very

sensitive to data transformation. Strong data transformation

tends to lose important information, while weak data trans-

formation is not effective. This property adds to the difficulty

of method design. Moreover, contrastive learning often has

shortcuts, which can easily lead to feature overfitting and

model collapse [15]. More constraints need to be provided

in the feature space to facilitate contrastive learning.

In order to address the aforementioned issues, we intro-

duce Bayesian Contrastive Learning with manifold Regular-
ization, which exploits model transformation to generate posi-

tive/negative samples, and extracts more separable representa-

tions through the constraints of the feature space. We propose

two modules, Bayesian contrastive learning and feature man-

ifold regularization. Bayesian contrastive learning transforms

the model based on Monte Carlo dropout, and employs the

transformed model to extract different features as positive

pairs. By training with dropout, the model improves the

robustness to disturbance. Besides, to make full use of negative

samples, an entropy-based memory bank updating strategy is

proposed, which preferentially selects negative samples with

small entropy to be replaced. Thus, the negative samples with

large entropy, which are harder negative samples, are retained

and make the model learn a more separable feature space.

Feature manifold regularization applies projection-based data

reconstruction to extract comprehensive information to avoid

overfitting for contrastive learning and similarity-based feature
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decoupling for increasing the diversity of features to prevent

degenerate solutions.

In summary, our contributions include the following: 1)

We construct a self-supervised learning mechanism Bayesian
Contrastive Learning with manifold Regularization, which

employs contrastive learning to extract robust and separable

feature representations and applies auxiliary tasks to constrain

the features for better generalization ability. 2) We propose a

Bayesian contrastive learning paradigm to obtain stronger fea-

ture representation capacity. Based on model transformation,

we reduce epistemic uncertainty for better model robustness.

And we apply entropy to improve the updating strategy

of memory bank. This strategy makes full use of negative

samples to obtain the separable feature space. 3) We design

feature manifold regularization. Through projection-based data

reconstruction and similarity-based feature decoupling, The

model avoids overfitting to shortcuts and collapse solutions.

The rest of the paper is organized as follows. Sec. II

introduces the proposed bayesian contrastive learning method.

Experimental results are shown in Sec. III and concluding

remarks are provided in Sec. IV.

II. BAYESIAN CONTRASTIVE LEARNING METHOD

The proposed self-supervised learning method is interpreted

in this section. In summary, we deploy Bayesian contrastive

learning to extract feature representations and manifold regu-

larization to boost the feature space.

A. Bayesian Deep Learning for Skeleton Based Action Recog-
nition

Previous work pointed out that there is a strong correlation

between the performance of contrastive learning and data

transformation. Therefore, the research on data transformation

has been quite rich. However, most of these previous methods

are designed for RGB image data, lack of generalizibility

for skeleton data. And because high-level representation of

information like skeleton is sensitive to data transformation,

a too strong strategy of transformation may lose too much

information, and a too weak strategy can not be efficient

enough for feature learning. So it is non-trivial to find the

optimal data transformation.

Therefore, our attention move from transformation of the

data to that of the model, i.e. generating positive and negative

samples by transforming the model weights. To achieve model

transformation in a neural network, we replace deterministic

weight parameters of the network with distributions over these

parameters, which turns the neural network into a Bayesian

neural network (BNN). We employ dropout variational in-

ference to sample the parameters from the distribution to

obtain the transformed model. This inference is done by

training a model with dropout before every layer to sample

from the approximate posterior (stochastic forward passes,

referred to Monte Carlo dropout [16]). And based on the

BNN, we estimate the aleatoric uncertainty and epistemic

uncertainty [16] to assist training.
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Fig. 1. The composition of Bayesian contrastive learning. Yellow and gray
arrows are applied to indicate the pipeline for the online encoder f(·) branch

and the offline encoder f̂(·) branch, respectively. On each forward pass,
we employ Monte Carlo Dropout to sample the graph from the Bernoulli
distribution. The blue arrows show the pipeline of the entropy based memory
bank updating strategy. The features with darker colors in the memory bank
represent larger entropy. The feature embedding with the smallest entropy is
replaced when updating.

As shown in Fig. 1, our pipeline utilizes the encoder f(·)
and adopts a projection head for contrastive learning. More

details about the Bayesian contrastive learning are provided

as follows.

Bayesian Contrastive Learning. Based on BNN, we propose

Monte Carlo dropout as a model transformation and employ

uncertainty to update the memory bank adaptively.

• Monte Carlo Dropout: BNN assumes that the parameters

of the model come from a distribution, and each forward pass

samples the model from the distribution to obtain the output

hi = f
̂W(xi) with Ŵ ∼ q(W), where W is the parameters

to be optimized and q(·) is the distribution function. For Monte

Carlo dropout, we adopt Bernoulli distribution for sampling.

Specifically, we only transform the adjacency matrix in the

graph convolutional network (GCN), which makes the network

more robust to modeling the relationship between nodes. The

transformed model can be expressed as:

hi
l+1 = σ(D− 1

2 (B�A)D− 1
2hi

lWl), (1)

where � indicates element-wise multiplication and B ∼
1
pBernoulli(p). The matrix A is the adjacency matrix.

Sampling from a model distribution is equivalent to an

ensemble of multiple models. Using features extracted from

different transformed models for contrastive learning can re-

duce epistemic uncertainty, which captures uncertainty in the

model parameters. Thus, the model can learn to extract more

consistent feature representations and becomes more robust to

noisy data.

• Entropy Based Memory Bank Updating Strategy:

Previous works treat each negative sample equally and perform

the first-in, first-out updating strategy, ignoring the differences

of the negative samples. To make more use of harder samples

for representation learning, we apply aleatoric uncertainty to

quantitatively measure the difficulty of negative samples, and

employ it as an indicator to preferentially replace samples

with low uncertainty and retain samples with high uncertainty.

Heteroscedastic aleatoric uncertainty captures noise inherent

in the observations, with some samples potentially having
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more noisy outputs than others. These samples are regarded

as harder negative samples.

To capture aleatoric uncertainty in contrastive learning, we

compute the entropy in contrastive learning for each sample.

It can be measured as follows:

H(ŝi) = −
M∑
j=1

pj logpj ,pj =
exp(K(ŝi,mj))∑M
k=1 exp(K(ŝi,mk))

, (2)

where mj ∈ M. The uncertainty of the sample can be

measured by entropy i.e. samples with higher entropy are

more easily confused and therefore more uncertain. These

samples are treated as harder negatives and kept in memory

bank updating. And the samples with the smallest entropy are

replaced by new negative samples.

However, considering this entropy is an inaccurate estimate

of aleatoric uncertainty due to the large model uncertainty

in the early training stage, we perform a two-stage training

strategy: 1) first-in, first-out strategy for memory bank updat-

ing. 2) then the model can supply high-confidence aleatoric

uncertainty estimation, the strategy is replaced with Entropy
Based Memory Bank Updating Strategy.

B. Feature Manifold Regularization

The fore-mentioned design learns a compact and separable

feature space by contrastive learning. However, contrastive

learning faces problems such as overfitting and pseudo-

negative samples, which make the learned features not well

adaptive to downstream tasks. In this section, we introduce

two agent tasks, projection-based data reconstruction and

similarity-based feature decoupling, to boost the representation

learning.

Projection-Based Data Reconstruction. Previous works of-

ten employ original data for reconstruction. Instead, we apply

random projection for manifold projection, which is simple

and computationally efficient. Besides, it can approximately

preserve the paired distance between any two samples in the

data set according to Johnson–Lindenstrauss lemma [17].

After sampling the random projection A, we project the

data xi into the feature space h̃i. Finally, a regression head

gr(·) takes in the features hi extracted by the encoder f(·)
to reconstruct the projection h̃i. Data reconstruction enables

the model to extract more comprehensive information without

losing important information due to overfitting in contrastive

learning.

Similarity-Based Feature Decoupling. In order to satisfy

the diversity assumption, we achieve feature decoupling by

reducing the similarity between each other. Specifically, we

apply both online similarity reduction and offline similarity

reduction to exploit both the data within a batch and the

features in the memory bank.

• Online Similarity Reduction: To reduce the similarity

of features in a batch for each sample, we consider reducing

the concentration on the spherical manifold by employing a

projection head gon(·) to project and normalize the output

features hi to unit vectors ci on the hypersphere. After

TABLE I
USUPERVISED LEARNING RESULTS ON PKUMMD DATASET.

Models PKU I (%) PKU II (%)

MS2L [12] 64.8 27.6
P&C [6] 59.9 25.5

3s-AimCLR [24] - 38.5
ISC [25] 80.9 36.0

3s-CrosSCLR [14] 84.9 32.9
BCLR 85.6 44.5

sampling a batch B, we compute the center of mass vector

c̄ = 1
|B|

∑
ci∈B ci. The concentration is the length of the

center of mass vector, given by R̄ =
√
c̄T c̄.

If the features are tightly clustered, R̄ will be almost 1. If

features are widely dispersed, R̄ will be almost 0. We make

the feature distribution more uniform by reducing R̄.

• Offline Similarity Reduction: To exploit the features in

the memory bank M, we randomly sample in the bank M
to construct a decodable information bottleneck (DIB) [18].

In detail, we first randomly sample a feature mr from the

memory bank M. Then we train a projection network goff (·)
to employ the input feature hi to increase the cosine similarity

with mr. In training, we reverse the gradients of encoder so

that the features extracted by the encoder f(·) are not easy to

be used to predict mr.

Resort to this module, the similarity between different

features is reduced with the diversity increased. The task

reduces the predictability between them and the redundancy

of features, which makes them more independent.

III. EXPERIMENT RESULTS

To train the network, all skeleton sequences are temporally

down-sampled to 50 frames. The encoder f(·) is based on ST-
GCN [19] with hidden units of size 256. Adam optimizer [20]

is applied for training of 300 epochs. We conduct the experi-

ments on following datasets:

• NTU RGB+D Dataset 60 (NTU 60) [21] This is a large-

scale dataset which contains 56,578 videos with 60 action

labels and 25 joints for each body, including interactions with

pairs and individual activities.

• NTU RGB+D Dataset 120 (NTU 120) [22] This is

an extension to NTU 60 and the largest dataset for action

recognition, which contains 114,480 videos with 120 action

labels. Actions are captured with 106 subjects with multiple

settings using 32 different setups.

• PKU Multi-Modality Dataset (PKUMMD) [23] The

actions are organized into 52 categories and include almost

20,000 instances in PKUMMD. The PKUMMD is divided

into part I and part II. Part II provides more challenging data

with large view variation. We evaluate the model on the cross-

subject (xsub) protocol.

A. Evaluation and Comparison

In this part, we compare our method with other methods

under unsupervised, semi-supervised and supervised settings.
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TABLE II
UNSUPERVISED LEARNING RESULTS ON NTU DATASET.

Model
NTU 60 (%) NTU 120 (%)

xsub xview xsub xset

MS2L [12] - 52.5 - -
AS-CAL [13] 64.8 58.5 49.2 48.6

P&C [6] 59.3 56.1 44.1 41.4
SeBiReNet [26] 79.7 - - -
AimCLR [24] 79.7 74.3 - -

3s-Colorization [27] 83.1 75.2 - -
ISC [25] 78.6 76.3 67.1 67.9

3s-CrosSCLR [14] 83.4 77.8 66.7 67.9
BCLR 83.9 77.8 66.8 67.5

TABLE III
SEMI-SUPERVISED LEARNING RESULTS ON NTU 60 DATASET.

Models
1% 10%

xview xsub xview xsub
ASSL [28] - - 69.8 64.3
MCC [29] - - 59.9 55.6

Colorization [27] - - 73.3 66.1
ISC [25] 38.1 35.7 72.5 65.9
BCLR 42.2 37.6 73.4 68.8

Unsupervised Approaches. In unsupervised learning, a linear

classifier φ(·) is applied to the pre-trained fixed encoder

f(·) to classify the extracted features. Compared with other

methods in Table I and II, our model shows superiority on

these datasets. We argue that the transformation that 3s-

CrosSCLR [14] and ISC [25] design in contrastive learning

task is handcrafted, which makes it easier for the model

to overfit the handcrafted transformation. On the contrary,

our method adopts Bayesian contrastive learning and the

negative samples are adaptively updated due to our specific

design. Moreover, through the feature space regularization,

the features extracted by our method are more suitable for

downstream tasks.

Semi-Supervised Approaches. In semi-supervised learning,

the encoder f(·) is pretrained with full data, and then fine-

tuned with the classifier φ(·) with with randomly sampled 1%,

10% of the training data. In Table III, our method improves

the accuracy considerably and performs better than the state-

of-the-art methods, especially with smaller training data.

Supervised Approaches. In the supervised learning setting,

after pretraining on the encoder f(·), we fine-tune the encoder

f(·) and classifier φ(·) on the downstream task. The results

in Table IV confirm that our method extracts the information

demanded by downstream tasks and can better benefit action

recognition. In comparison with state-of-the-art supervised

learning methods, our model achieves better performance.

TABLE IV
SUPERVISED LEARNING RESULTS ON PKUMMD DATASET.

Models PKU I (%) PKU II (%)

MS2L [12] 83.4 42.4
ISC [25] 84.0 40.2

3s-CrosSCLR [14] 91.1 50.8
BCLR 91.4 55.0

TABLE V
ANALYSIS OF BAYESIAN CONTRASTIVE LEARNING ON PKUMMD I

DATASET WITH UNSUPERVISED LEARNING APPROACHES.

Ablation Configuration PKUMMD I (%)

Probability of Dropout

0 84.3
0.125 85.6
0.25 51.5
0.5 50.2

Model Transformation
B�A 85.6
B�Wl 84.7

B� hi
l 84.5

Updating Strategy
Queue-Based 84.7

Entropy-Based 85.6

TABLE VI
ANALYSIS OF MODULE COMBINATION ON PKUMMD II DATASET WITH

UNSUPERVISED LEARNING APPROACHES.

Module
PKUMMD II (%)

BCL PDR SFD
37.7

� 38.7
� 41.1

� 39.5
� � 42.5
� � � 44.5

B. Ablation Study

Next, we conduct ablation experiments to give a more

detailed analysis of our proposed approach.

In Table V, we first explore the effect of different model

transformation settings on the downstream task. As the proba-

bility of dropout increases, the accuracy first increases and then

decreases. In the absence of model augmentation, contrastive

learning is too easy and thus difficult to learn meaningful

feature representations. However, too strong a model trans-

formation will result in the loss of too much information.

Different transformation positions also have an impact on

contrastive learning. Transforming the graph is better than

transforming the weights and the features. Finally, experiments

on the memory bank updating strategy also demonstrate that

our entropy-based strategy can provide harder negative exam-

ples to learn a more separable feature space.

The ablation studies on different modules are displayed in

Table VI. Contrastive learning provides the most improvement.

Feature regularization constraints further optimize the feature

space, making features more suitable for generalization to

downstream tasks. The combination of multiple tasks achieves

the best performance.

IV. CONCLUSIONS

In this work, we propose a self-supervised learning method

Bayesian Contrastive Learning with manifold Regularization
for skeleton-based action recognition. Based on Bayesian

deep learning, we propose Bayesian contrastive learning and

feature manifold regularization. Specifically, we exploit Monte

Carlo Dropout sampling to obtain positive/negative samples.

Meanwhile, multiple agent tasks including projection-based

data reconstruction and similarity-based feature decoupling to

learn a more robust and generalized feature space.
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